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A general model for the contractility of cells is presented that
accounts for the dynamic reorganization of the cytoskeleton. The
model is motivated by three key biochemical processes: (i) an
activation signal that triggers actin polymerization and myosin
phosphorylation, (ii) the tension-dependent assembly of the actin
and myosin into stress fibers, and (iii) the cross-bridge cycling
between the actin and myosin filaments that generates the ten-
sion. Simple relations are proposed to model these coupled phe-
nomena and a continuum model developed for simulating cell
contractility. The model is capable of predicting key experimentally
established characteristics including: (i) the decrease in the forces
generated by the cell with increasing substrate compliance, (ii) the
influence of cell shape and boundary conditions on the develop-
ment of structural anisotropy, and (iii) the high concentration of
the stress fibers at the focal adhesions. We present numerical
examples of a square cell on four supports to demonstrate these
capabilities.

cell adhesion � cytoskeleton � stress fibers � mechano-sensitivity �
self-assembly

This article presents a general model for cell contractility moti-
vated by recent observations of the forces exerted by mamma-

lian cells on a compliant substrate (Fig. 1), in which spatial
correlations are sought between the force vectors acting on the
substrate and the organization of visible stress fibers. The forces are
obtained by placing the cell on an array of microneedles (1) and the
stress fibers revealed by subsequent application of an actin-staining
procedure. It is apparent from this (and numerous other) images
that many of the force vectors are inclined to the axis of the visible
fiber bundles. Indeed, some are almost normal to the bundles and,
often, the largest vectors are present at locations where no visible
stress fibers exist. The implication is that the forces are induced by
fibers on a much finer scale, not revealed by the staining procedures.
A corollary is that a contractility model capable of characterizing
the forces should emerge from continuum level considerations,
rather than from ensembles of discrete fibers. The intent of this
article is to present a continuum model for the evolution of the
cytoskeletal structure and demonstrate its consistency with key
features found in experiments.

Previous attempts at developing models for the cytoskeletal
network in stationary cells (that is, neglecting cell spreading and
motility) have taken the perspective that the cytoskeleton is an
interlinked structure of passive filaments (2, 3). When included,
cell contractility has been modeled by simply prescribing a
thermal strain to either a cell otherwise regarded as an isotropic
elastic continuum (4) or a discrete set of elastic filaments
representing the stress fibers (5). Such models neglect the
biochemistry of the active apparatus of the cell that generates,
supports, and responds to mechanical forces. A biochemically
motivated model for contractility is developed in this article.

A generalized model must be capable of characterizing the
basic interactions among the forces, the assembly and dissolution
of stress fibers, and the compliance of the substrate. Moreover,
once calibrated, it must explain such effects as the strong
influence of substrate compliance on the forces, and the depen-
dence on cell size of the forces exerted at its periphery, as well
as the influence of cell shape and boundary conditions on the
orientations of the fibers. It will be demonstrated that the

present model is capable of addressing all of these effects. At this
initial stage, incorporation of focal adhesions is deliberately
avoided. Instead, the boundaries of the cells are connected to
rigid supports through elastic springs. This exclusion allows a
straightforward formulation capable of replicating several im-
portant features found in cells. Focal adhesions will be incor-
porated at a later stage.

Summary of Key Biochemical Processes
To devise a mechanical model, the biochemical processes oc-
curring in the cell must link with the formation and dissociation
of the stress fibers, as well as the associated generation of tension
and contractility. However, the precise details of the biochemical
processes are as yet not well understood. The model presented
here does not depend on the details of the biochemical processes,
rather we use the current limited understanding of the biochem-
ical processes and develop a modeling framework that can be
appropriately modified as and when these biochemical processes
are better understood. Here, we thus merely summarize the basic
processes that motivate the model; readers may refer to ref. 6 for
further details.

In the suspended or resting state, the binding proteins or
integrins are dispersed over the cell surface (and may be
attached to some actin filaments). The short actin filaments in
the cytoplasm are surrounded by a pool of actin monomers
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Fig. 1. Measurement of contractile forces in a fibroblast cell on a bed of
microneedles. The actin fibers are stained in green. The arrows show the deflec-
tion of the posts, with the lengths of the arrows proportional to the force exerted
by the cell on the posts. There seems little correlation between the orientations
of the visible stress fibers and the directions of the force vectors (figure courtesy
of C. Chen, University of Pennsylvania, Philadelphia, PA).
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bound to profilin. Myosin II exists in the bent state in which the
tail domain interacts with the motor head. The formation of
stress fibers in the cell is triggered by an activation signal in the
form of either a nervous impulse or an external signal. Several
parallel intracellular pathways are involved. For example, adhe-
sion to the extracellular matrix triggers a signaling pathway that
induces the activity of profilin, cofilin, and gelsolin. In turn, this
process activates phospholipase C, which hydrolyses phosphati-
dylinositol bisphosphate and stimulates the release of Ca2� from
the endoplasmic reticulum. The influx of Ca2� activates gelsolin,
which cleaves the capped actin filaments into tiny fragments. The
large numbers of free ends generated in this manner are rapidly
elongated by the monomeric actin pool, forming many long
filaments, some cross-linked with filamin and some bundled by
�-actinin. Phosphorylation triggered by Ca2� causes myosin II to
preferentially assume its extended state. This activation pro-
motes the assembly of myosin II into bipolar filaments that enter
into the �-actinin-bound actin-filament bundles, resulting in the
formation of stress fibers. These fibers generate tension by
cross-bridge cycling between the actin and myosin filaments.
When the tension is allowed to relax, the actin filaments are no
longer held in place by the bipolar-myosin filaments and the
stress fibers disassemble. These phenomena are deemed respon-
sible for two key experimental observations.

(i) Tension is essential to the formation of stress fibers. For
example, fibroblasts contract collagen gels in which they are
suspended. Free-floating gels may contract to only 10% of
their original size, and the fibroblasts in these gels lack stress
fibers (6). If the gels are anchored, isometric tension is
generated and the fibroblasts develop prominent stress
fibers (7). In anchored gels, upon release of the tension,
rapid contraction is followed by disassembly of the fibers (7,
8). Application of tension to cells in culture also stimulates
the formation of stress fibers (9). When tension is applied to
a localized site on the cell surface, an actin filament bundle
is induced immediately adjacent to this site (10). Associated
with the tension-dependent assembly of the stress fibers is
the development of structural anisotropy. For example,
uniaxially constrained fibroblast populated collagen gels
develop high degrees of fiber alignment and mechanical
anisotropy, whereas gels constrained biaxially remained
isotropic (11).

(ii) Cells precisely sense restraining forces and respond by
exerting a greater tension on the integrins. The associated
strengthening of the linkages occurs within the first few
seconds of the application of the restraining force and is
localized around its point of application (12).

Model for Cytoskeletal Dynamics Leading to Contractility
Basic Phenomena. The preceding biochemistry suggests that the
mechanical response of the stress fibers comprises three coupled
phenomena:

(i) An activation signal that triggers the formation of stress
fibers.

(ii) A fiber formation rate dependent on the activation signal,
coupled with a dissociation rate dependent on the tension.

(iii) A contraction rate (contractility) for the stress fiber that
depends on the tension through the cross-bridge dynamics.

Phenomenological relations are proposed to model these
coupled phenomena for the formation, dissociation, and con-
traction of a single stress fiber. Thereafter, the relations are
generalized to two- and three-dimensional cytoskeletal networks
by conducting a homogenization analysis. The key assumptions
in the homogenization are as follows:

(i) There is sufficient actin and myosin in the cell that the
activation of the stress fibers in each direction is not limited
by their availability.

(ii) A representative volume element can be defined. Namely,
a fine scale network of fibers exists on a length scale much
smaller than the dimensions of the cell (Fig. 2).

(iii) Stress fibers can form in any direction � with equal prob-
ability (Fig. 2).

The Model. We summarize the key equations in the two-
dimensional, small-strain version of the model.

The precise details of the signaling processes are ignored.
Rather, the level of the signal (which may be thought of as the
concentration of Ca2�) is assumed to be given by

C � exp��t i��� , [1]

where � is the decay constant of the signal, ti is the time measured
from the instant of the most recent signal, whereupon the level
of the signal resides in the range, 0 � C � 1.

The signal initiates the formation of the stress fibers as
parameterized by the activation level �: � (0 � � � 1) is a
nondimensional biochemical state parameter for characterizing
the recruitment of actin and myosin in a stress fiber bundle with
� � 1, corresponding to the maximum possible recruitment
allowed by the biochemistry. The evolution of the activation level
� of the stress fibers at angle � (Fig. 2) is assumed to be governed
by a first-order kinetic equation

�̇��� � �1 � �����
Ck� f

�
� � 1 �

����

�o���
� ����

k� b

�
, [2]

where the overdot denotes differentiation with respect to time t
measured from the instant of the application of the first signal,
�(�) is the tension in the fiber bundle at orientation �, and �o �
��max is the corresponding isometric stress at activation level �.
Thus, �max is the tensile stress that the stress fibers exert at full
activation (� � 1). The dimensionless constants k� f and k�b govern
the rates of formation and dissociation, respectively, of the
fibers.

The bundle contraction�extension rate 	̇ is related to the stress
� by the cross-bridge dynamics. Here, we employ a simplified

Fig. 2. The macro- and microscales in a cell with a two-dimensional network
of stress fibers.
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version of the Hill (13) equation while still accounting for fiber
lengthening
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	̇o
� �

1
k� v

�
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	̇o
� 0

1
	̇

	̇o
� 0

. [3]

The nondimensional constant k�v is the fractional reduction in
fiber stress upon increasing the shortening rate by 	̇o. The axial
fiber strain rate 	̇ at angle � is related to the material strain rate
	̇ij by

	̇ � 	̇11 cos 2� � 	̇22 sin 2� � 	̇12 sin 2� , [4]

and the average stress generated by the fibers follows from a
two-dimensional homogenization analysis as

�ij �
1
 �

�/2

/2 � ���� cos2 �
����

2
sin 2�

����

2
sin 2� ���� sin2 � 	 d� . [5]

The contractile response of a cell includes a contribution from
the passive elasticity, provided mainly by the intermediate
filaments of the cytoskeleton that are attached to the nuclear and
plasma membranes. These passive elements act in parallel with
the active elements and, thus, additive decomposition of the
active and passive stresses is assumed. The elasticity is described
by the isotropic linear elastic Hooke’s law. Then, the total stress
	ij (due to both the active and passive contributions) is written
by using Cartesian tensor notation (summation over repeated
indices) as


ij � � ij � � Ev
�1 � 2v��1 � v�

	kk� ij �
E

�1 � v�
	 ij� ,

[6]

where E and � are the passive Young’s modulus and Poisson’s
ratio, respectively, and �ij is the Kronecker delta.

The previous expressions are the simplest possible, consistent
with the assumed biochemical processes. In future develop-
ments, when warranted, different mathematical dependencies
can be considered for Eqs. 1–3. Moreover, in the numerical
examples presented here, the strains in the cell are relatively
small, and a linear elastic relation for the passive elasticity
suffices. When warranted, a nonlinear (hyperelastic) law for the
passive elastic contribution could be included in Eq. 6. Such
changes to Eqs. 1–3 or to the elastic constitutive law will not alter
the general features predicted by the model. Only the absolute
magnitudes of the stress, strain, and time scales will change.

The model has been implemented as a user defined material
model in the commercial finite element package ABAQUS
(ABAQUS Inc., Providence, RI). All ensuing simulations are
performed in a finite deformation setting. That is, the effect of
geometry changes on the momentum balance and rigid body
rotations are taken into account.

Square Cell on an Array of Four Supports
Experiments to probe the forces generated by a cell on a bed of
microneedles (1) have motivated the two-dimensional plane-
stress problem illustrated in Fig. 3. A square cell, side L � 50 �m
(thickness b � 1 �m), is supported over a length Ls � 5 �m at
the four edges by an elastic foundation. The foundation has

stiffness kE per unit area and rotates with the cell edges. Thus,
the foundation can only exert tractions normal to the supported
cell edges, i.e., in this finite deformation setting, the traction rate

˜
Ṫ on a cell surface with unit outward normal

˜
en (in the current

configuration) is given by

˜
Ṫ � �kEu̇n

˜
en � T

˜
ėn, [7]

where u̇n is the displacement rate along
˜
en and T is the magnitude

of the traction vector
˜
T. By using this representation, the focal

adhesions need not be considered explicitly.

Reference Properties. No attempt is made to justify the choice of
the parameters used by using either theoretical arguments or
precise experimental measurements. Rather, these constants
have been chosen to give results similar to those in Tan et al. (1).
The decay constant of signals was taken to be � � 720 s, whereas
the passive Young’s modulus and Poisson’s ratio were chosen to
be E � 0.077 nN��m�2 and � � 0.3, respectively. The nondi-
mensional reaction rate constants are k� f � 10 and k�b � 1.0,
whereas the nondimensional fiber rate sensitivity k�v � 10. The
maximum tension exerted by the stress fibers, �max � 3.9
nN��m�2, and the reference strain rate in the cross-bridge
dynamics law, 	̇o � 2.8 
 10�4 s�1. The effect of the foundation
stiffness is investigated by varying kE over the range, 0.015
nN��m�3 � kE � 6.0 nN��m�3, for a cell with initial conditions
�(�) � 0 at time t � 0 over the entire cell, i.e., the cell is initially
stress and stress fiber-free. Unless otherwise specified, the four
supports are identical. A single activation signal is applied to the
cell at time t � 0.

The cell was modeled by using four-noded plane stress ele-
ments (CPS4 in ABAQUS notation) and a uniform mesh with
an element size 0.25 �m was used in all of the calculations.

Fig. 3. Schematic of the boundary value problem analyzed to simulate the
contraction of a square cell on an array of four posts. Note that the foundation
springs rotate with the cell edges as described by Eq. 7.
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Nondimensional Groups. The nondimensional geometric variable
is L� � L�Ls, whereas the cell and support properties are E� �
E��max, �, k� f, k� b, k� v, �	̇o � 	̇o� and k� E � kEL��max. Results are
presented for the average support displacement over the support
area, defined as

u� �
u
L

�
1

2LLs
�

2Ls

�u1
2 � u2

2 ds, [8]

where ui are the displacement components of the cell along the
supported edges and the corresponding work-conjugate support
force F is nondimensionalized as F� � F�bLs�max.

The evolution of these quantities is presented in terms of the
nondimensional time t� � t��. Unless otherwise specified, in the
results presented subsequently, the cell properties are E� � 0.02,
� � 0.3, k� f � 10, k� b � 1.0, k� v � 10, and �	̇o � 0.2 with the
support stiffness varied between 0.2 � k�E � 78. It is worth
emphasizing here that for the relatively small strains in the
simulations presented below, the passive response of the cells is
very compliant and, thus, the normalized Young’s modulus E� is
set at an appropriately low value of 0.02.

Effect of Support Stiffness. To visualize the evolution of the stress
fibers, we define two additional quantities:

(i) The average stress fiber activation over all orientations

�� �
1
 �

�/2

/2

����d�. [9]

(ii) The value �p of the maximum principal stress of the active
stresses �ij and the associated principal direction, measured
as the orientation �p with respect to the x1 axis (Fig. 3). The
orientation �p may be regarded as the ‘‘resultant’’ stress
fiber direction.

The distributions of the normalized stress �� p � �p��max and of
�� plotted for selected t�� and k�E �10 (Fig. 4) reveal the
following. The stress fiber activation is high at short times, but
the high contraction rates result in low stresses. Subsequently,
the stress fibers dissociate in the interior. At steady state (t�� �
10.5), the stresses are proportional to �� , with the concentration
of fibers a maximum near the supports, where the constraints
imply near-isometric conditions throughout the deformation
history. Moreover, the fibers emanate from the supports and
spread out toward the interior, causing �� to decrease with
increasing distance from the supports. Recall that, because the
initial condition is �(�) � 0 over the entire cell, the distributions
are entirely a consequence of the support constraints. The
steady-state distributions of �� for several support stiffness (Fig.
5) affirm that the highest levels of activation always occur near
the supports. For the lowest stiffness, the constraint is insuffi-
cient to sustain stress fibers such that, except adjacent to the
supports, �� � 0. Conversely, for the highest k�E, there are only
small support displacements with the cell shape distorting (Fig.

Fig. 4. The distribution of the normalized maximum principal stress �� p and
average stress fiber activation level �� at four selected times (support stiffness
k�E � 10). The distributions of the orientations �p also are included as line
segments (with length scaled by the magnitude of the normalized stress �� p).
The filled circles show the original positions of the cell corners.

Fig. 5. The distribution of �� at steady state for normalized support stiffness
values k�E � 3.9 (a), k�E � 10 (b), and k�E � 39 (c). The distributions of the
orientations �p are also included as line segments (with length scaled by the
magnitude of the normalized stress �� p). The filled circles show the original
positions of the cell corners.
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5c). The orientations of the ‘‘resultant’’ stress fibers (Fig. 5)
indicate that, although the activation level strongly depends on
the foundation stiffness, the orientations are insensitive to the
value of k�E. In all cases, some fibers form along the cell
perimeter, whereas others form along the diagonals.

The time evolution of the average displacement, u� and support
force F� (Fig. 6) indicate that for small support stiffness (k�E � 0.2),
the steady-state force is almost zero, corresponding to the
unconstrained contraction of the cell. Upon increasing k�E, the
support deflection decreases and force increases, consistent with
a wide range of experimental observations (see for example ref.
11 and the discussion in ref. 14). This trend can be rationalized
in the context of the model as follows. The evolution Eq. 2
dictates rapid fiber assembly when the activation signal C is
strong and, conversely, a high dissociation rate when the stresses
are below their isometric value. For compliant supports, the
initial formation of the stress fibers results in large support
deflections, but the support forces are low, causing rapid disso-
ciation. By the time that the supports generate significant force,
the activation signal has decayed away, resulting in small steady-
state �� (Fig. 5) and, correspondingly, low support forces.

For extremely stiff supports, the force initially overshoots (Fig.
6) and then asymptotes to steady state. This overshoot is
eliminated if the passive Young’s modulus of the cell is increased
to E� � 2.0 (Fig. 6). The role of the Young’s modulus in governing
this overshoot is rationalized as follows. Consider a cell under

uniaxial isometric tension, namely restrained by infinitely stiff
supports. Fibers along the tensile axis do not contract and
generate isometric tension. The contraction of the fibers orthog-
onal to the tensile axis generates a compressive stress contribu-
tion along that axis, because of the Poisson effect, thereby
reducing the axial tension with continued contraction of the cell
orthogonal to the tensile axis of the cell. Increasing the Young’s
modulus decreases this contraction and the associated reduction
in the generated tension.

Development of Structural Anisotropy. In the preceding examples,
the cell developed an anisotropic microstructure (stress fibers
along the cell perimeter and diagonals) dictated by the locations
of the supports. We now break the symmetry by presenting two
sets of results for a cell in which one of the supports has a lower
stiffness than the other three, which all have k�E � 10. The
distributions of �� at steady-state are presented on Fig. 7 (using
k�E � 3.9 and k�E � 0.2 for the bottom right support). The
orientations �p of the maximum principal stress �� p also are
included as line segments (with length scaled by the normalized
stress �� p). The results reveal that the stress fiber concentration

Fig. 7. The distribution of �� at steady state for the cell on supports with
unequal stiffness. The top two and bottom left supports have stiffness k�E � 10,
whereas the bottom right support has stiffness k�E � 3.9 (a) and k�E � 0.2 (b). The
distributions of the orientations �p are also included as line segments (with
length scaled by the magnitude of the normalized stress �� p). The filled circles
show the original positions of the cell corners.

Fig. 6. The time evolution of the normalized displacement u� � u�L (a) and
normalized force per support F� � F�(bLs�max) (b) exerted by the cell. Results are
shown for five selected values of the normalized support stiffness and refer-
ence cell properties. Results also are included for a cell with a passive Young’s
modulus E� � 2.0 on supports with stiffness k�E � 78.
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is high near the stiff supports, but the cell is nearly devoid of
fibers in the bottom right corner for k�E � 0.2. Note that the stress
fibers form preferentially along the �45° diagonal.

Conclusion
A biochemically inspired model for the dynamic rearrangement
of the cytoskeleton that incorporates cell contractility has been
presented. It entails a highly nonlinear interaction among sig-
naling, the kinetics of tension-dependent stress-fiber formation�
dissolution, and stress-dependent contractility. It is shown that
the model captures the general contractile features observed in
experimental studies including: (i) the decrease of the forces
generated by the cell with increasing substrate compliance, (ii)
the influence of cell shape and boundary conditions on the
development of structural anisotropy, and (iii) the high concen-
tration of the stress fibers at the focal adhesions.

The model can be readily extended to account for additional
phenomena, such as cell spreading and motility. The dynamics of
the focal adhesions that link the extracellular matrix to the

cytoskeletal network also can be included by adding models that
couple focal adhesion formation with the stresses in the con-
necting fibers (15). Such assessments (unpublished data) make
direct contact with the adhesion and contractility measurements
in Tan et al. (1) and Parker et al. (16).

The model has the additional feature that it can be used to
address one of the key challenges in cell biomechanics. Namely,
how to measure the mechanical characteristics of living cells that
react to the measurement tools. Because the model captures the
reorganization of the cytoskeletal elements in response to
mechanical perturbations, it can be used as a framework to
design and interpret appropriate experiments.
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